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CHAPTER 2:           THE BEHAVIOR OF WAVES

Things move.  They sometimes move in random fashion, sometimes 
along a path of some sort, sometimes in a repeating motion.  Let’s first 
explore the latter, and narrow that further to things moving back and 
forth.  Indeed, if you look at something going around and around from 
the side, it appears to be going back and forth anyway.  The simplest back 
and forth, or vibrating motion is called simple harmonic motion.

In your imagination if not actually, take a string about 3 feet long and 
tie a reasonably large weight (two or three pounds) to one end, the 
other to a hook at the top center of your doorway or some other place 
where it can swing freely.  You have made a pendulum, which is one 
example of something moving in Simple Harmonic Motion (See fig. 
2-1).

Figure 2-1

                
Simple Harmonic Motion

Lift the weight back, let it swing and watch it—at least in your 
imagination.  It’s a simple but special motion.  At the top of its swing, 
for an instant, it’s dead still, then it gains speed as (in this case) gravity 
pulls it down.  The string makes it fall in a curve and it is going fastest 
as it is at the bottom of the arc, but the weight has inertia and wants to 
keep going.  By now, however, gravity is working against it: constantly 
slowing the weight until everything is balanced for a moment on 
the other side and it stops for an instant… before falling back the 
other way, constantly gaining speed through the bottom of the arc, 
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then moving back up the other side, and so on…  If it weren’t for 
the friction of the air and the string, this would repeat forever, once 
started.  It’s a vibrating motion, repeating itself periodically in cycles, 
over and over.  Simple harmonic motion can happen in a straight line, 
but it is easier to visualize it as the arc of a pendulum: our weight, a 
playground swing, a skateboarder on a half-pipe.  And, as we shall see, 
simple harmonic motion is also the most basic component of sound.

Note that the actual speed of the weight through the air is constantly 
changing, from stopped and ready to fall, to faster, faster, fastest, 
s lower,  s l o w e r … stopped on the other side, then back the other 
way…  The speed is always smoothly changing but there is a constant 
to the entire movement: it always takes the same amount of time to 
complete a cycle before it repeats.  This frequency with which the 
weight (or anything moving in simple harmonic motion) begins a new 
cycle is one of the two most basic ways of measuring or describing that 
motion—and one of the two most basic measurements in our field of 
sound.  Simple harmonic motion can be described by its frequency.

Take (or imagine) another, smaller weight and tie it to a string about a 
foot long.  Hold the other string end steadily and start this pendulum 
with your other hand.  Note that the frequency of this pendulum 
is higher (i.e., it starts each cycle more frequently).  In this case the 
length of the string is the difference—as in all pendulums (pendula 
if you took Latin).  We measure frequency in cycles-per-something.  
Cycles per minute or hour or millennium might be appropriate for 
some very low frequencies, but for our use, cycles per second, or CPS, 
is the most useful.  Your short pendulum with the 1 foot string is 
probably vibrating in simple harmonic motion at a frequency of about 
1 (complete—back and forth) cycle per second, or 1 CPS.

In general, frequency can be determined by other factors.  Go back to 
your large pendulum, and grasp the string about 4 inches above the 
weight, holding it steady.  Lift the weight with the other hand, and 
start it swinging.  Was the movement as smooth and long-lasting as 
before?  Probably not.  The heavier weight was much happier moving 
at the lower frequency.  This is an important concept that haunts us 
throughout our work in the Acoustic World of sound: big stuff likes to 
move at lower frequencies, little stuff at higher frequencies.  Moreover, 
if you start both of your weights swinging at an appropriate frequency, 
the heavier one will continue to swing longer. 
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In the physical world, larger masses tend to require more energy to 
start motion, to vibrate at a lower frequency, and to vibrate longer.  
Smaller masses tend to vibrate more easily, at higher frequencies, but 
they also tend to be more delicate; their motion is easier to interrupt.  
We’ll encounter this again and again.

Now for the second basic, critical way to describe or measure our simple 
harmonic motion.  Get one of your pendulums swinging again.  How 
high from the bottom does it go?  How wide is the arc?  How far does 
it swing from the lowest point?  How much energy did you use to lift 
the weight, and to what height?  What is the size of the motion?  These 
questions all revolve around a vague, slippery, but critical characteristic.  
The term we use to talk about this is amplitude.  The amplitude of a 
motion that repeats periodically (such as our simple harmonic motion) 
is directly related to the distance it travels from the bottom (zero) 
point in each arc.  The wider the swing, the higher the amplitude; and 
in some sense, the more energy involved. 

Try starting your pendulums from different heights.  Notice that 
either pendulum is happy to vibrate at a variety of amplitudes.  As 
you lift the weight out further (transferring more of your energy to 
it) it swings in a wider arc (higher amplitude).  Barely move it and 
the amplitude is very low.  Notice something else: no matter what 
amplitude you give the motion, the frequency remains the same; about 
1 cycle per second for the short one.  Later on you may discover that 
amplitude can impact our perception of frequency in hearing, but for 
now it’s useful to understand that they are inherently separate things.  
We know we can quantify or measure frequency in CPS (cycles per 
second).  But amplitude is a slippery concept, so for now let’s just think 
of it as higher or lower. 

Before we connect all this directly to sound, let’s try one more thing: You 
now have some idea of the nature of simple harmonic motion, so try to 
emulate it with your arm. Hang it loosely from your raised elbow and 
let your forearm swing in quasi-simple harmonic motion.  Now pick 
up a piece of (imaginary?) chalk and go to a handy blackboard.  Move 
your arm up so that the motion becomes sideways, as though you were 
the homecoming queen doing that slow hackneyed wave from a parade 
float.  If you wave with the chalk up against the blackboard, you’ll make 
a nice arc, over and over in the same place.  Notice that the width of 
the chalk arc is a tangible, concrete representation of the amplitude of 
your arm’s simple harmonic motion.  In order to chart the frequency of 
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your arm’s vibration, you’ll have to move across the blackboard surface.  
If you walk at a constant speed you’ll make a repeating, squiggly line.  
As a matter of fact, if you could move precisely at say, one foot per 
second, you would have made a tangible representation of your simple 
harmonic motion, and could measure the amplitude by the size of 
the arc, and the frequency (in cycles per second) by the number of 
repetitions of the squiggle in each foot of blackboard surface.  Notice 
how smooth the change in curvature is… just like the smooth change 
in motion of the pendulum.

Simple Waves

Did you take trigonometry in high school or college?  I didn’t, but 
I understand that a part of trigonometry involves special equations 
called trigonometric functions.  If you enter a series of numbers into 
one of these equations and plot the answers on a graph, they make 
designs.  As it turns out, if you plot out numbers with what’s termed 
the “sine” function they will make a squiggly design just like the 
idealized one you made on the blackboard when you made a tangible 
representation of simple harmonic motion (See fig. 2-2). This isn’t a 
coincidence; trigonometry is a mathematical way of describing the 
universe, and the sine function happens to relate to simple harmonic 
motion, the most basic vibration in physics.  Thus, a wave that vibrates 
in simple harmonic motion is called a sine wave, a term you may have 
encountered already in your exploration of sound.  From now on, the 
term “sine wave” will begin to replace “simple harmonic motion” in this 
book, just as it has in the most of the sound art world.

Figure 2-2

A Sine Wave
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We’ll discuss the nature of sound waves themselves in the next chapter, 
but for now, let’s accept on faith the notion that air can move in waves, 
including sine waves (simple harmonic motion).  It turns out that when 
airborne sine waves fall in certain ranges of frequency and amplitude, 
our ears sense them as sound.  Because sine waves periodically repeat 
themselves cycle after cycle (at, say 300 cycles per second) we hear 
sine waves as sound at a constant musical pitch.  The higher the 
frequency, the higher the pitch, the higher the amplitude, the louder 
the pitch sounds.  There isn’t a perfect correlation between frequency 
(the measurement of a sine wave) and pitch (what pitch we hear) or 
between amplitude (the measurement of the energy in the wave) and 
loudness (how loud it sounds to us), but it’s close enough for us to 
connect them now.  There’s plenty of time later to allow things to get 
complicated…

The frequency range of the average human is usually given as 20 CPS 
for the lowest sound we can sense, to 20,000 CPS for the very highest 
sound.  In reality, almost from the month we are born, the top range of 
our pitch (frequency) sensitivity begins to drop, just by the act of living.  
If we are subjected to loud sounds, it may drop further.  The average 
young adult may be able to hear pitches up to around 16-17,000 CPS.  
As for amplitude, for now let’s just say it has to fall in the range of loud 
enough to hear, but not so loud it hurts your ears.

Before we go on, a couple new terms are in order:

1.  If you are rich and give people money, they might name a building 
after you.  If you are a famous scientist, they tend to name scientific 
stuff after you.  Heinrich Hertz lived in the latter part of the 19th 
century and was first to detect electromagnetic waves.  They were also 
measured in cycles per second, so they named cycles per second hertz, 
after Heinrich.  Hertz is abbreviated as Hz.  This is the more common 
term and the one we’ll use from now on to measure frequency.

2.  You are probably familiar with the metric term kilo, meaning 
thousand. It is often abbreviated K or k.

So if you see a readout on your cousin Oprah’s digital keyboard that 
says “Sine Wave: 3 kHz”, you now know it refers to a wave exhibiting 
simple harmonic motion at 3000 cycles per second, and you’re confident 
that it would fall in the midrange of your hearing. 
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A sine wave makes a very smooth, mellow, simple sound, because of its 
smooth changes in motion.  It has a precise, definite pitch.  It can be 
characterized and measured by its frequency, which relates to our sense 
of pitch, and its amplitude, relating to our perception of its loudness.  

If you have access to a digital keyboard, sound software, or a test 
CD, listen to some sine waves.  Listen at all the frequencies your 
equipment will allow.  Otherwise, simply imagine a quiet flute sound, 
or better yet a recorder, or pan pipes.  These are approximations of 
sine waves, although even they are a bit more complex.  The main 
pitch measurement in the sound technology arena is hertz (cycles per 
second) not musical letter names, so it’s greatly to your advantage to 
form a mental ‘hearing image’ of what various frequencies sound like.  
You don’t need perfect pitch memory.  You’ll be surprised how quickly 
you learn to hear in your mental ear approximately what 1 kHz (a sine 
wave vibrating at 1000 cycles per second), or 200 Hz, or 3.7 kHz, or 
12 kHz sound like.  If you can find the opportunity, it will be time well 
spent.

Complex Waves

In our daily lives we rarely hear pure sine waves, but they form the 
primary building blocks as well as a conceptual framework for all that 
we do hear.  Complex sounds come from complex vibrations.  Let’s go 
back to the pendulums to understand this.  Again, if it’s inconvenient 
to actually perform this experiment, visualize it carefully in your mind.  
Take three pendulums, each significantly lighter than the preceding 
one, with string lengths of, say, four feet, two feet and one foot.  Each 
by itself will naturally swing at a different frequency.  Now, leave 
Pendulum #1 on the hook in the doorway, then tie the string from 
Pendulum #2 to the weight of pendulum #1, and the string from #3 to 
#2 to make a chain, large down to small.  You have three pendulums, 
each with a different natural frequency, piggy-backed one upon the 
other.  Pull back the small bottom weight and let ‘er go (see fig. 2-3).  
Focus on the movement of that smallest weight.  Its arc is no longer 
the smooth sine motion, at any of the frequencies, but a more complex 
vibration, a combination of the three.  At any given instant one of 
the weights may be pulling forward in its arc, working either with or 
against the others, to make the smallest weight dance and dart as it 
swings along the larger path of the big weight.
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Figure 2-3

Three Pendulums

It seems to me that many carnival thrill rides use the same principle, 
by means of the circular cousins of simple harmonic motion: You (not 
I…ever…) sit in the cart of a Tilt-a-Whirl, Octopus, Zipper, or any 
of those God-awful big rides and find yourself pushed, pulled, pulled 
harder, slowed down for a second, then absolutely jerked out of your 
body in a complex series of direction changes that is (evidently) fun.  
How do the ride designers come up with this seeming mayhem?  Spend 
a half-hour looking at the rides instead of riding them.  They put the 
cart and rider into a mix of circular motions—sometimes in three 
dimensions—of different diameters, going at different speeds.  A very 
complex ride results from a group of simple circular motions, piggy-
backed one on another.  What’s more, the ride isn’t really chaotic, but 
flows according to a predictable, logical combination of forces.  And 
periodically the same combination of swerves and jerks is repeated, 
just as the overall motion of our three pendulums repeats itself. 

One other thing: if you were to able to describe the ride you might 
say, “I went this way, then I sped up, then turned really fast and went 
that way, then I went over there but more slowly, then I went around 
upside down, then…”  You might have been most interested in where 
you were at any instant, because that would detail your journey in 
time, or the “shape” of your movement from beginning to end.  The 
ride designers, on the other hand would be more interested in the 
circle sizes and speeds, and directions of all the individual movements 
that work together to make up the ride, because the key to controlling 
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your body movement lies in controlling the nature of the mechanical 
building blocks that contribute to it.  Both ways of describing the ride 
have their purpose: by its shape in time (which is the final result), and 
by its building blocks and their characteristics (the means by which to 
analyze and control it).  The designers know the building blocks, and 
when they need to build the Next Big Thrill, they tweak their circle-
motion combinations for maximum effect, without setting up forces 
that might tear the thing apart. 

Back to complex waves.  It turns out that the sine waves we hear can 
be combined to make complex waves (and complex sounds) just as 
the three pendulums or circular combinations on the Tilt-a-Whirl 
generate complex motions.  What’s more, our ears have the wonderful 
ability to sense any organization or logic in the combination.  If you 
have the means to do so, generate a 400 Hz sine wave and play it 
through speakers or headphones.  You will hear a very pure, colorless, 
perfect but kind of dull sound (no, I did not say earlier that a flute is a 
pure sine wave).  The pitch is easy to define or sing with (in this case, 
near the G above middle C on a musical instrument).  Now change 
the frequency to 800 Hz.  If you have conventional music experience 
you will immediately recognize a relationship between the tones.  The 
second tone is a musical octave above the first.  Our ears and brains 
recognize the mathematical ratio of 2 to 1.  A sine wave sounds an 
octave higher when its frequency is doubled.

If twice the frequency is recognized as an octave higher, what about 
three times the frequency?  Another octave?  No, another octave 
would require four times the original (doubling it two times = four 
times).  Our ear can also recognize the frequency relationship of 3 
to 1 or 3 to 2.  800 Hz sounds an octave higher, and 1200 Hz sounds 
what is termed a musical fifth above that.  Music theory is beyond the 
scope of this book, but as it turns out, the intervals in the major scale 
and many other pitch collections in music of Western and many other 
cultures are based on mathematical relationships of frequencies like 
these.  Even in those cultures using other scales, the simplest ratios fit 
together.  Our ears do the math for us, the frequencies fit together well 
and we are aesthetically drawn to the sound combinations.

If we play three sine waves of 400, 800, and 1200 Hz together won’t 
they just make a chord of sine waves, instead of some single mystical 
complex sound that is sort of like a carnival ride or something?  Well, 
yes and no.  The trick is to lower the amplitude of the higher frequency 
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sine waves (i.e., make them quieter) until they “melt” into the lowest 
one in our ears.  At some point we stop hearing the individual sounds 
and they become one, a sound with the pitch of the lowest sine wave, 
but some extra quality, some tone color. 

If you actually perform this experiment you will get a sound like a cheesy 
electric organ note, and that’s essentially how they work.  A pipe organ 
works by controlling the flow of air in a group of pipes.  All things being 
equal, a four-foot-long pipe will produce a wave that is one octave 
higher than an eight-foot-long pipe (big stuff = low frequencies; little 
stuff = you-know-what).  The organist makes a complex sound wave 
by using stops (mechanical or electric switches) to send air through 
varying combinations of pipe lengths, in turn producing complex 
waves in predictable mathematical relationships.  The key to building 
(or analyzing, or controlling) any complex repeating vibration or wave 
is to understand its particular recipe for the frequency and amplitude 
of its component sine waves.  A Hammond electric organ works in 
similar fashion: pulling the various tone bars (labeled 16, 8, 4, 2 2/3 
etc.) chooses frequency ratios, and the length to which they are pulled 
determines amplitudes. 

The Big Concept we are learning here is that complex sounds are made 
from simple building blocks.  The Big Therefore is that if we can learn 
to work with the building blocks, we can control complex sounds in 
powerful ways. 

In the early 19th century Jean Baptiste Joseph Fourier 
successfully proved an earlier theorem stating that any complex 
periodic (-ally repeating) wave can be analyzed as the sum of a 
combination of sine waves of varying frequency, amplitude and 
phase (we‛ll get to phase shortly).  Modern computers make this 
Fourier Analysis practical, and if you‛ve run across the phrase 
Fast Fourier Transform (FFT), it essentially means a quick and 
dirty—but useful—breaking down of a complex wave into its 
component sine waves.

At this point we need to add a few more common and important terms 
to our vocabulary.  We’re already familiar with sine wave, frequency, 
amplitude, Hertz, and I just snuck in ‘periodic’ in the preceding 
paragraph.  We’ve been concerned with what are termed periodic 
waves: waves produced by a vibration that periodically repeats itself, 
cycling over and over.  Sine waves are periodic; the complex waves 
we’re dealing with so far are periodic. 
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In a complex wave, the lowest frequency sine wave in our example is 
called the fundamental.  The higher sine waves are called partials.  So 
far, all the partials have been simple multiples (‘integral multiples’, in 
math terms) of the fundamental.  800 Hz is 2 times the fundamental 
of 400 Hz; 1200 Hz is 3 times the fundamental.  When partials are 
integral multiples like this we give them a specific label: harmonic 
partials, or harmonics.  Let’s try out these new terms in a context:

“When listening to a periodic, pitched wave such as comes from 
an organ, our ears and brain do the math, and we sense the 
ratio of harmonic partials to the fundamental.  The pitch of the 
fundamental is reinforced, but the nature or tone color of the 
total sound becomes more complex than that of the fundamental 
alone.”

Recall that we could trace a tangible representation of the shape of 
a sine wave on the blackboard, giving a smoothly curved squiggle 
(fig.2-2).  Recall that the movement of three piggy-backed pendulums 
was more jerky.  If we could plot the shape of these motions on the 
blackboard, they would have a more complex, but still repeating shape 
as shown in figure 2-4. We begin to understand that there are two 
ways to describe waves: by defining the shape of their motion over 
time, and by defining their components—just as the Tilt-a-Whirl 
ride can be described by each movement and direction, moment to 
moment, and also by the combination of the circular motions used to 
generate it.  The two technical methods by which we describe sounds 
are thus 1) by their waveshape (over time) and 2) the combinations 
of building blocks from the entire spectrum of frequencies, sometimes 
termed frequency spectrum, or spectral content.  Each method has 
its purpose and place in the sound arts.

Figure 2-4

Three Sine Waves”Piggybacked”
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You may have encountered a specific waveshape called ‘sawtooth’ 
(because when drawn it looks like one (fig. 2-5). The spectral components 
of a sawtooth wave are a fundamental sine wave, plus every harmonic 
partial above it in frequency.  In other words, if the fundamental is 
at 200 Hz, then there are partials present at 400, 600, 800, 1000, 1.2 
kHz, and so on.  (Again, they are all termed ‘harmonic’ because they 
are integral multiples of the fundamental--2 times, 3 times, 4 times 
the fundamental frequency etc.)  Also, each partial in a sawtooth 
wave has a lower amplitude than the one below it, until they shrink to 
insignificance. 

Figure 2-5

Sawtooth Wave

So, we have a particular waveshape (sawtooth), built with a particular 
recipe of building blocks or spectral components (all harmonic partials, 
decreasing in amplitude), and it happens to make a particular sound, a 
very clearly pitched sound with a ‘reedy’ or ‘buzzy’ tone color; something 
like an oboe or violin, or one of those “Saw-…” presets on your digital 
keyboard.  Sawtooth waves came to be very common in electronic 
sound art in the days of analog synthesis, because it is relatively easy to 
generate a sawtooth wave with electronic circuits.  At some point, you 
may encounter a synthesis procedure called a “resonant filter sweep”.  If 
you sweep a resonant filter slowly over a sawtooth wave, you can hear 
each harmonic partial individually.  (If you have the opportunity, try 
it—or have someone do it for you.)  The first 16 harmonics are called 
the harmonic series, which sounds like the broken notes of a major 
chord (harmony!) and then a major scale as you go higher (sorry, music 
theory again…).  The harmonic series also impacts everything from 
the notes available on a bugle to one reason that loudspeakers sound 
different in different rooms.  Once again: the harmonics of any tone 
are partials that are integral multiples of the frequency of that tone.
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You may be aware of other common waveshapes stemming from the 
analog days such as square waves, triangle waves and pulse waves.  
Each has a particular recipe of spectral components (generally 
harmonic partials, again because of the electronic circuits used 
at that time), and each has a distinctive tone color. 

Let’s add another term here: The common term for tone color in sound 
art is timbre (pronounced “tamber”).  A very subjective term, “timbre” 
recognizes the differences in two sounds having the same pitch.  A 
cello and trombone each can play middle C, but with different timbres.  
Or, think about “the velvety timbre of my new synth pad”, or “the fat 
timbre of the old Oberheim 8 synth in my basement,” etc.

Here’s The Big Concept again: complex sounds are composed of simple 
building blocks.  Therefore, if you can control or alter the building blocks, you 
can control or alter the timbre of a sound.

Up to this point, we have been looking exclusively at harmonic 
partials.  Harmonics reinforce the fundamental and its pitch, but their 
complexity makes for beautiful, interesting sounds.  We can see that 
the trick for the builders of trumpets and violins and guitars over 
the years has been to accentuate the harmonic partials in pleasing 
amplitude recipes; this creates beautiful, clear-pitched sounds.  
However, in the normal physical world, things don’t necessarily vibrate 
in such an orderly fashion.  A non-harmonic partial is a sine wave 
that doesn’t have a simple integral mathematical relationship to the 
fundamental.  For a fundamental of, say, 350 Hz, some non-harmonic 
partials might vibrate at 611 Hz, 1391 Hz, 2.483 kHz etc.  In these 
sounds, the fundamental isn’t reinforced in our ear, even though we 
still have sensation of pitch or pitches.  Non-harmonic partials tend to 
give a complex wave a “clangy” or bell-like tone, depending upon their 
density and amplitudes. 

It‛s difficult to make (analog) electronic circuits generate 
complex non-harmonic partials, which is why analog synthesizers 
had trouble simulating bells.

Non-harmonic partials are a vital part of the spice of any sound art, 
whether occurring naturally, or generated with technology.
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Noise

We’ve discussed periodic waves: repeating vibration, sine waves, steady 
frequency, combining to make complex waves; either reinforcing the 
fundamental constant pitch or clanging against it.  A great deal of what 
we hear in the world comes from the combination of simple harmonic 
motions, but it is written nowhere in natural law that every motion be 
based on sine motion.  Sometimes things jerk around or back and forth 
without repeating, and with neither rhyme nor reason.  Some motions 
are just random or chaotic.  In sound building and analysis, random 
fluctuations are called noise.  When our ear can recognize no order in 
a sound, it can discern no specific frequencies, so pure random noise 
has no pitch to it.  Noise is the other component of the sounds we 
hear.  Make your voice “hissssssssssssss” and you are generating noise.  
(Notice however, that hizzzzzzzzzzzzzz—with a z—sneaks a pitched 
sine wave or two in there).  A long rumble of thunder is also noise, 
even though it sounds completely different.  This can be understood 
though two concepts: 

1.  A wave motion can have completely random features, yet still fall 
within a defined range.  To better understand this, get a rat.  A very 
energetic, but irrational, illogical rat.  Now put him in a building and 
close all the entrances.  Assuming there is neither food nor water (nor a 
second, sexy rat) in the building, after a day or so, at any given moment 
the rat’s location is completely random.  He could be anywhere in the 
building.  Now, let’s say you find the rat in Room 231 and close the 
door.  After he’s had time to scurry around a bit, the rat’s position at any 
moment is still completely random, but now it has been constrained to 
a smaller area within the building.  Randomness, but within a smaller 
portion of the entire spectrum of possibilities in the whole building.  If 
you plop a cardboard box over him, he’s really ticked off and bouncing 
off the walls in a small area, but his position is still random, unless you 
hold him perfectly still.  Something can have a random characteristic 
even if constrained to less than the total of all possibilities. 

2.  The second concept took me awhile to fully grasp:  when there 
are random fluctuations in an object or wave, even though they don’t 
repeat enough to be able to discern a frequency of their repetition, 
each motion can be understood as being a portion of a complete cycle, 
which would have a frequency if it were repeated.  
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Imagine that you filmed only portions of the swings of many 
pendulums, each swinging at a different frequency.  If you were 
to cut the film into short segments, throw them on the floor 
and splice them back together, you would have a film of random 
motion, even though each pendulum had a specific frequency. 

The upshot of these two concepts is that noise—random fluctuations—
can be constrained to particular areas of the entire frequency spectrum 
(20-20,000 Hz in our case).  When you “hissssssssssssssss”, you are 
creating noise that is predominantly high frequency, while thunder 
rumbles at low frequency.  The varying areas of the spectrum are called 
noise bands, often described as some number of octaves wide and 
centered around a frequency.  A one-octave noise band centered on 
1000 Hz will have a particular sound—random and with no pitch, but 
statistically predictable and repeatable over a period of time.  Actually, 
total randomness in anything soon stops being an adventure and 
becomes old hat, sort of like a dull sine wave, except you can’t sing 
along. 

Be aware that noise has a second definition: noise can also be “that 
which I don‛t want to hear right now”.  If I‛m concentrating on 
hearing your snare drum recital (random noise), then the trumpet 
playing in the other room (lots of sine waves) might bother me 
to the point of yelling, “Can you stop that noise over there so 
I can hear these musical random fluctuations!”  With luck, the 
musicians would understand the definition of the term “noise” as 
I mean it here, and the appropriate player would respond with a 
change in behavior.

Envelopes

We’ve now glanced at the concept of complex timbre, as described by 
waveshape and/or spectral content.  This assumes that the sound just 
keeps going on and on and on.  Never changing.  In the real world, 
however, things change.  The term we use for the manner in which 
a sound changes over time is envelope.  The most common use of 
the term relates to amplitude (loudness) envelopes, although we will 
encounter others shortly.

The most common, simplified description of amplitude envelopes 
again comes from analog synthesis.  After a sound begins, it reaches 
its highest level in a certain amount of time—the attack time.  Then 
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it immediately begins to lower in amplitude to a secondary point 
according to its decay time.  The next parameter is the sustain level 
(not time): the amplitude at which a note is held until turned off (while 
the key is held down on a keyboard, for instance).  Finally, there is the 
time it takes for the sound to die away after the energy causing the 
vibration is turned off, the release time.  Attack, Decay, Sustain, and 
Release, or ADSRs comprised the four stages of the original envelope 
generators in analog synthesizers, and the term remains in common 
use.  That’s fine for us for now, but it’s important to remember that 
complex waves from physical vibrations in the real world can have 
many more stages of ups and downs than the four in a classic ADSR.

Although it’s generally more stable in the physical world, the frequency 
of a wave as well as its amplitude can change over time.  Whistle hard 
through your fingers and the pitch probably changes from beginning 
to end.  So does an air-driven fire siren.  Even a trumpet note played by 
an expert will have a (very, very subtle) frequency envelope.

As it turns out, complex envelopes can be present in waves because each 
partial or noise band can be understood to have its own amplitude and/
or frequency envelope.  If you actually constructed the three-pendulum 
experiment, you probably noticed that before long the complex darting 
gave way to a more simple swinging, at the frequency of the largest 
weight.  The amplitude envelope of the small, high frequency weight 
was shorter, which is usually the case in the physical world, because 
small masses (begetting high frequencies) tend to hold less energy and 
die away sooner.

Translate this concept to sound and you’ll see that the differing 
amplitude and frequency envelopes of the building blocks (sine waves 
or noise bands) of a complex wave make for changes in the specific 
recipe of the wave over time, which in turn changes the timbre over 
time.  This is the anatomy of what is known as a timbre envelope; it’s 
related to ‘filter envelopes’ you may have encountered in some sound 
devices. 

Find an easy pitch for singing a long tone and change smoothly 
from vowel to vowel: “eeee-aayy-aahh-oohh-oooo”.  As you sang 
on one pitch, you changed the recipe of the various partials by 
the movement of your tongue and mouth, changing the amplitude 
envelope of each, giving your sung note a timbre envelope: a 
change in timbre (tone color) over time.
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We differentiate sounds nearly as much by their envelopes as by their 
timbre recipes (made up of fundamentals, partials, and noise).  For 
example, take a trumpet and an oboe, or a snare drum and some frying 
eggs: within each pair, the sounds are actually distinguished more by 
their envelopes than by their spectral content.

I didn‛t really live a fast life as a 5-year old, and I can remember 
many times sitting alone at the piano in our living room, fascinated 
by a discovery: I‛d pound about 30 piano keys with my forearms 
to make a crashing sound, put down the sustain pedal to keep it 
going, then make a C major chord with my fingers and let off the 
pedal.  The remaining C chord notes sounded as though they were 
coming from an organ rather than a piano.  What I was really 
doing was masking the distinctive attack of the piano envelope 
with the noisy bang of the many keys.  The actual timbre recipe, 
sans envelope, sounded like a reed organ. 

We now have understanding (if not control) of all the components of 
all sounds.  Complex waves are composed of simple building blocks: 
sine waves (fundamentals, harmonic and non-harmonic partials) and 
noise bands.  The more harmonic partials in a complex wave, the 
more completely our ear can discern the math relationships and the 
more clearly the pitch of the fundamental is reinforced.  The more 
non-harmonic partials, the more the sense of pitch is blurred to give 
a ‘clangy’ or bell-like sound.  As our ear loses capability to discern 
any periodicity (any repeating organization from one or more sine 
waves) it begins to sound random within certain frequency ranges—it 
becomes noise instead of pitch.  These things are predictable, logical, 
and potentially controllable, but can be very complex in the physical 
world, and what makes them still more complex is that all of this 
changes over time.  Each building block (sine wave) can have its own 
amplitude and/or frequency envelope, resulting in a complex timbre 
envelope.  This can be analyzed as a changing waveshape, or as the 
evolving spectral content of a wave, depending upon our particular 
purpose in high-technology sound art.

We have also brought to one place (or learned for the first time), 
a number of terms that are encountered continually in modern 
sound art; terms which will also help define many more terms and 
concepts yet to come.  We have encountered sine waves, frequency, 
amplitude, CPS, Hertz (Hz), fundamentals, partials (harmonic and 
non-), waveshape, spectral content, periodic, octave, Fourier analysis, 
FFT, timbre, noise, noise bands, envelopes, and ADSRs.  Strangely, 
we haven’t really defined sound itself yet (next chapter), and we’ve 
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referred to a few terms such as analog that will return later, naked and 
exposed.

Through these basic elements, all actual sounds are made.  A low note 
on a grand piano begins with a knock (noise) with a short envelope, 
then continues into a complex mix of many partials, the non-harmonic 
type with shorter decay times soon dwindling to nothing, the higher 
harmonics defining the timbre and reinforcing the pitch, then dying 
away, one by one, until the final remnant is nearly a pure sine wave 
at the fundamental frequency.  This is essentially the entire length 
of the string vibrating, just as the three pendulums’ darting motion 
gradually gives way to the motion of the largest mass, which has the 
most energy.

Up to now your work in sound and music art may have been at an earlier 
level on the Technology Curve (although not a lesser thing, remember).  
You may have knowledge of the nature of sound in your intuition and 
muscle memory instead of your intellectual understanding.  You may 
coax beautiful timbres and expressive envelopes out of your fingers on 
the guitar or piano; or your lungs, throat, and lips on the sax or trumpet.  
If you’re an arranger you have also developed some procedural skill, 
and you understand some complex, pre-designed recipes and envelopes 
with the names flute, timbale, clavinet, ride cymbal, etc.  You’ve learned 
how to make more complex waves by combining them in ways that 
your ear remembers will work.

However, as you move further along the Curve, the means of controlling 
waves transfers from fingers and lips to buttons and switches and mice 
and keyboards and controllers… to worlds where you have far more 
power, and far more choices.  At this point you may be cutting a new 
path for yourself: beginning to comprehend sound waves with your 
intellect instead of your ear, grasping some new concepts as well as 
clear terms for old ones.  The good news is that eventually—if you build 
the solid foundation—the conscious thinking and studying become 
second nature.  You will rediscover an intuitive, but now more powerful 
control of these new tools at the top of the Technology Curve, and ride 
the Curve even as it continues to climb higher.
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